THE EQUATION \(p_1 = p_2 \) LEADING TO 3.14 MUST BE REPLACED BY \(p_1 - p_2 = \gamma \left(\frac{d^2 \xi}{dx^2} + \frac{d^2 \xi}{dy^2} \right) \).

So that we get instead

\[
- \frac{d}{\alpha} \left(U_2 \frac{d \phi_1}{dx} + \frac{d \phi_1}{dt} + \frac{d \phi_1}{dy} \right) + \frac{d}{\alpha} \left(U_1 \frac{d \phi_1}{dx} + \frac{d \phi_1}{dt} + \frac{d \phi_1}{dy} \right) \equiv \gamma \left(\frac{d^2 \xi}{dx^2} + \frac{d^2 \xi}{dy^2} \right)
\]

Introducing normal modes and substituting now (3.19) \(A_2 = -(s + ik \cdot U_2) \cdot \frac{1}{k} \) and \(A_1 = (s + ik \cdot U_1) \cdot \frac{1}{k} \), LEADS TO

\[
\frac{d^2}{\alpha} \left[\frac{\langle x \rangle}{(s + ik \cdot U_2)} \right] - \frac{d^2}{\alpha} \left[\frac{\langle x \rangle}{(s + ik \cdot U_1)} \right] = \frac{k^2}{\alpha} \gamma
\]

Which can be solved to give

\[
s = -ik \frac{\langle x \rangle U_1 + i U_2}{\langle x \rangle + i U_2} \pm \left[\frac{k^2 \langle x \rangle \langle x \rangle - U_1 \cdot U_2}{\langle x \rangle + i U_2} \right] \frac{1}{2}
\]

The two modes are neutrally stable provided

\[
k^2 \langle x \rangle \langle x \rangle \langle x \rangle - U_1 \cdot U_2 \langle x \rangle \langle x \rangle + k^2 \gamma
\]

\[
\left(U_1 - U_2 \right) \langle x \rangle \langle x \rangle \langle x \rangle + k^2 \gamma
\]

For a fixed \(k \), the right-hand side is largest for \(\rho = 0 \), \(\frac{\rho}{\langle x \rangle} = k \), so that these are the most unstable conditions. With \(k = \rho \), the least stable wave has a wave number determined by

\[
\max \left[\frac{k^2 \langle x \rangle \langle x \rangle \langle x \rangle + k^2 \gamma}{\langle x \rangle \langle x \rangle \langle x \rangle} \right] \rightarrow k^2 \gamma = \sqrt{\langle x \rangle \langle x \rangle}
\]

\[
k = \frac{\langle x \rangle \langle x \rangle}{\gamma}
\]

\[
\left(U_1 - U_2 \right)^2 \leq \left(\frac{\langle x \rangle \langle x \rangle}{\gamma} \right) \leq \frac{2 \langle x \rangle \langle x \rangle}{\gamma}
\]

At the margin of stability

\[
\Delta U = \left| U_1 - U_2 \right| = \left(\frac{2 \langle x \rangle \langle x \rangle}{\gamma} \right)^{1/6} \left(\frac{\langle x \rangle \langle x \rangle}{\gamma} \right)^{1/6} = 6.6 \text{ m/s}
\]

\[
\zeta = \frac{\langle x \rangle \langle x \rangle}{\gamma} = 367 \text{ m}^{-1}, \quad \lambda = \frac{2 \pi k}{\zeta} = 0.0171 \text{ m}
\]

\[
C = \frac{\sqrt{\langle x \rangle \langle x \rangle}}{\zeta} \quad \Delta U = \left| U_1 + \frac{6.6}{\zeta} \Delta U \right|
\]

\[
U_2 = U_1 + \Delta U
\]

Relative to the water.
Problem 2: Consider the inviscid parallel flow of two horizontal layers of liquid. The lower layer, of thickness h, has density ρ_1 and velocity $U_1 e_x$, while the upper layer, of infinite thickness, has density ρ_2 and velocity $U_2 e_x$. The lower layer rests upon a horizontal surface, with the interface separating both fluids defined in terms of the vertical distance $z = h + \zeta(x, y, t)$ to that surface.

1. Formulate the problem (equations and boundary conditions) for the two velocity potentials $\phi_1(x, y, z, t)$ and $\phi_2(x, y, z, t)$ and the perturbed interface $\zeta(x, y, t)$.

2. Obtain the base solution for the unperturbed flow Φ_1 and Φ_2.

3. Introduce normal modes proportional to $e^{st+i(kx+ly)}$ and obtain the dispersion relation

$$0 = g\tilde{k}(\rho_1 - \rho_2) + (s + ikU_1)^2 \rho_1 \coth(\tilde{kh}) + (s + ikU_2)^2 \rho_2,$$

where $\tilde{k}^2 = k^2 + l^2$. Solve for s.

4. Consider the case $\rho_1 = \rho_2$. Obtain the growth rate and the phase velocity. Show that for $\tilde{kh} \to \infty$ one recovers the results developed in class for Kelvin-Helmholtz instabilities.

5. Consider the case $U_1 = U_2$. Investigate the resulting solutions for $\rho_1 < \rho_2$ and $\rho_1 > \rho_2$, including the limiting cases $\tilde{kh} \ll 1$ and $\tilde{kh} \gg 1$.

Solution:

1. The general equations are those for potential flow, $\nabla_i^2 \phi = 0$ where $i = 1$ corresponds to the region below the interface and $i = 2$ to the upper region. The pressure distribution is given by $P_i = \rho_i \left[C_i(t) - \frac{\partial \phi_i}{\partial t} - (\nabla \phi_i)^2/2 - gz \right]$, where $C_i(t)$ is a constant of integration. The boundary conditions at the interface include the kinematic and dynamic boundary conditions and the requirement that $\nabla \phi_i \to U_i e_x$ as $z \to 0, \infty$, respectively.

2. The base flow is determined by $\Phi_1 = U_1 x$ and $\Phi_2 = U_2 x$, such that $\nabla \phi_i \to U_i e_x$ at $|z| \to \infty$, $i = 1, 2$. The basic pressure distribution is hydrostatic, namely, $P_i = \rho_i \left[C_i - (\nabla \phi_i)^2/2 - gz \right]$. The boundary conditions reduce in this case to $[d\Phi/dz] = 0$ and $[P] = 0$, where the brackets indicate jump across the interface.

3. The perturbed problem is described in terms of the perturbed state $\phi' = \hat{\phi}(z)e^{st+i(kx+ly)}$ such that $\phi = \Phi + \phi'$ in each region. The perturbed interface is also describe following the normal mode decomposition $\zeta e^{st+i(kx+ly)}$. The perturbed potentials must remain harmonic so $\nabla^2 \phi'_i = 0$, which yields the equation

$$\frac{d\hat{\phi}_i}{dz} - \tilde{k}^2 \hat{\phi}_i = 0, \quad \tilde{k} = k^2 + l^2, \quad (6)$$

to be solved in each region with the appropriate boundary conditions, namely, $d\hat{\phi}_1/dz = 0$ at $z = 0$ (no penetration at the wall) and $d\hat{\phi}_2/dz \to 0$ as $z \to \infty$. Discarding unbounded solutions at $z \to \infty$, one can write the solution as

$$\hat{\phi} = \begin{cases}
\hat{\phi}_2 = A_2 e^{-\tilde{k}z}, & z > h + \zeta \\
\hat{\phi}_1 = A_1 \cosh \tilde{k}z, & z < h + \zeta
\end{cases} \quad (7)$$

where A_i are constants of integration. Kinematic and dynamic boundary conditions should be applied now at $z = h + \zeta$. The former provides a relation between A_i and ζ as follows

$$(s + ikU_2)\zeta = -A_2 \tilde{k} e^{-\tilde{kh}},$$

$$(s + ikU_1)\zeta = A_1 \tilde{k} \sinh \tilde{kh},$$
which, when combined with the dynamic boundary condition,

\[\rho_1 \left[(s + ikU_1)^2 \coth \tilde{k}h + g \right] \hat{\zeta} = \rho_2 \left[-(s + ikU_2)^2 + g \right] \hat{\zeta}, \]

renders the dispersion relation as follows

\[0 = g\tilde{k}(\rho_1 - \rho_2) + (s + ikU_1)^2 \mathcal{R}_1 + (s + ikU_2)^2 \rho_2, \quad \mathcal{R}_1 = \rho_1 \coth \tilde{k}h. \]

This is a quadratic equation for \(s \), whose solution is therefore given by

\[s = -ik \frac{U_1 \mathcal{R}_1 + U_2 \rho_2}{\mathcal{R}_1 + \rho_2} \pm \frac{1}{\mathcal{R}_1 + \rho_2} \sqrt{\mathcal{R}_1 \rho_2 (U_1 - U_2)^2 k^2 - (\mathcal{R}_1 + \rho_2)(\rho_1 - \rho_2) g\tilde{k}} \]

4. If both fluids have equal densities, eq. (10) can be simplified to

\[s = \frac{iS + \coth \alpha}{1 + \coth \alpha} \pm \frac{1 - S}{1 + \coth \alpha} \coth^{1/2} \alpha, \quad \alpha = \tilde{k}h > 0, \quad S = U_2/U_1. \]

We observe that, unless \(S = 1 \) (corresponding to a uniform stream), we can always find an eigenvalue with positive real part, provided \(\coth^{1/2} \alpha/(1 + \coth \alpha) \) is a positive function for positive values of \(\alpha \) (except, maybe, at infinity). We conclude that this configuration is unconditionally unstable when shear is present. The limiting case \(\alpha \gg 1 \), for which \(\coth \alpha \to 1 \), leads

\[\frac{s}{k} = -i \frac{U_1 + U_2}{2} \pm \frac{|U_1 - U_2|}{2}, \]

which is the classic result for KHI.

5. When both fluids move at the same velocity, \(U_1 = U_2 = U \), the dispersion relation is such that

\[s = -ikU \pm \sqrt{-\frac{\rho_1 - \rho_2}{(\mathcal{R}_1 + \rho_2)} g\tilde{k}}, \]

and hence the flow is unstable iff \(\rho_1 < \rho_2 \), with associated perturbations moving at a phase speed \(c = s_i/k = U \). The limit \(\alpha \gg 1 \), for which \(\mathcal{R}_1 \to \rho_1 \) gives us the characteristic dispersion relation for internal waves whereas the limit \(\alpha \ll 1 \), for which \(\mathcal{R}_1 \gg \rho_2 \), reduces the dispersion relation to

\[s/k = -ikU \pm \tilde{k}\sqrt{g'h}, \quad g' = g(\rho_2/\rho_1 - 1), \]

where \(g' \) is the reduced gravity, provided \(1/\coth \alpha \sim \alpha \) as \(\alpha \to 0 \). This is the dispersion relation for internal gravity waves.
4.1 The analysis is identical to that of Rayleigh with
\[\vec{v} = \left(\frac{\partial S_x}{\partial x}, -1, \frac{1}{2} \frac{\partial^2 S_y}{\partial y^2} \right) \quad \text{and} \quad \vec{p} = \vec{p}_0 - \frac{\vec{z}}{\alpha}. \]

Correspondingly (4.9) is replaced with
\[\vec{p} = \gamma \left(\frac{\partial^2 S_y}{\partial x^2} + \frac{\partial^2 S_z}{\partial y^2} \right). \]

A singular behavior of \(\vec{p} \) as \(r \to \infty \) is avoided with \(\vec{p} = \vec{p}_0 - \frac{\vec{z}}{\alpha} \), so that \(\vec{v}_r = -\frac{B}{k} \frac{\partial^2 S_y}{\partial x^2} \).

From (4.9) a \(- \frac{Bk}{9} \frac{\partial^2 S_y}{\partial x^2} = 5 \frac{\vec{z}}{\alpha} \), reducing (4.9b) to
\[k_n(ka) = \frac{\gamma}{\alpha^3} \left(1 - (ka)^2 - c^2 \right) \frac{\partial^2 S_y}{\partial x^2} \]
\[= \begin{cases} \frac{5}{2} \frac{\partial^2 S_y}{\partial x^2} & \alpha \ll 1 \, \text{for} \, \alpha > 0 \\ \frac{3}{2} \frac{\partial^2 S_y}{\partial x^2} + \frac{1}{2} \frac{\partial^2 S_z}{\partial y^2} & \alpha > 1 \end{cases} \]

For \(\eta = 0 \),
\[\xi = \eta \left(\frac{3}{2}(a^2 \eta^2 - 1) \right)^{1/2} \]

4.3
\[\vec{v} = \vec{v}_0 + \vec{v}_1 : \]
\[\vec{p} = \vec{p}_0 + \vec{p}_1 = \gamma \left(\frac{\partial^2 S_y}{\partial x^2} + \frac{\partial^2 S_z}{\partial y^2} \right) \]

Basic solution: \(\vec{v}_0 = 0, \vec{p}_0 = 0 \)

Perturbed solution: \(\vec{v} = 0, \vec{p} = \vec{p}_1 \)

\[\nabla^2 \vec{p} = 0 \]

At \(z = \pm \alpha \) at all times
\[\frac{\partial \vec{p}}{\partial t} = \gamma \left(\frac{\partial^2 S_y}{\partial x^2} + \frac{\partial^2 S_z}{\partial y^2} \right) \]

With \(\vec{p}_1 \vec{p}(t, e^{\pm ik_x y}) \)

Using the conditions at \(z = \pm \alpha \)
\[\nabla^2 \vec{p} = 0 \Rightarrow \vec{p} = A e^{i ka} + B e^{-i ka} \]

Nontrivial solution form
\[S^2 (A e^{i ka} + B e^{-i ka}) = \pm 2k^3 (A e^{i ka} - B e^{-i ka}) \Rightarrow \left(2 S^2 e^{2 \alpha} \right) \vec{p} = \left(2 S^2 e^{2 \alpha} \right) \vec{p}_1 \]

\[S^2 \left(\frac{\alpha^2}{\alpha^2} \right) = -\alpha^2 \frac{e^+ - e^-}{e^+ + e^-} \Rightarrow -\alpha^2 \text{coth} x \]

Negative for all \(\alpha \), so that \(\eta > 0 \) for all wave numbers.

No
\[S^2 \frac{2}{\alpha^2} = -\alpha^3 \frac{e^+ + e^-}{e^+ - e^-} = -\alpha^3 \cosh x \]