Problem 1: The supersonic intake shown in the figure, whose inlet-to-outlet area ratio is $A_2/A_1 = 0.3985$, is part of the propulsion system of a fighter aircraft designed to fly at a cruise Mach number $M_1 = 3$. Behind the aerodynamic compressor, assumed to be isentropic, there exists a release gate of variable area A_4 open to the atmosphere, whose objective is to control the air flow that circulates towards the engine.

- Determine the values of p_2/p_1 and M_2.
- Obtain the values of $p_3/p_1 = p_4/p_1$ at the release gate, as well as the Mach numbers M_3 and M_4 and the deflection angle α.
- Give an expression for the fraction of mass flow rate that is released back to the atmosphere, $(\rho_4 v_4 A_4 \sin \alpha)/(\rho_2 v_2 A_2)$, as a function of A_4/A_2. Determine the value of A_4/A_2 for which this fraction is 10%.
- An oblique shock is seen to form at the rear edge of the opening. Obtain the values of M_5 and p_5/p_1 found immediately downstream.

\[M_1 \quad p_1 \quad A_1 \quad A_2 \quad M_2 \quad p_2 \quad A_4 \quad p_4 \quad M_4 \quad \alpha \]

\[p_3 \quad M_3 \quad p_5 \]
Problem 2: The thrust of a high-altitude vehicle is provided by a solid-propellant rocket engine that discharges to the atmosphere through a convergent-divergent nozzle with exit-to-throat area ratio A_e/A_t. When operating in the upper atmosphere, the ambient pressure is so small that in the first approximation we may assume $p_a = 0$.

- Under those conditions, determine the minimum value of A_e/A_t needed to avoid reverse flow near the nozzle rim.

During the reentry, the ambient pressure increases continuously, giving also increasing values of the ratio p_a/p_0, where p_0 is the constant stagnation pressure in the combustion chamber upstream from the nozzle entrance. For the value of A_e/A_t calculated previously, determine the value of p_a/p_0 for which:

- The nozzle discharges to the ambient as a jet without expansions or shocks.
- There exists a normal shock wave standing at the nozzle exit.
- The nozzle unblocks, so that the flow is subsonic everywhere along the nozzle, except at the throat, where $M = 1$.

Problem 3: An air container at pressure p_c and density ρ_c discharges to an open atmosphere at pressure $p_a < p_c$ through a convergent-divergent nozzle with exit-to-throat area ratio $A_e/A_t = 4$.

1. Obtain the values of p_a/p_c for which (i) the flow is everywhere subsonic, except at the throat, where it is sonic, (ii) the nozzle discharge occurs as a supersonic jet with $p_e = p_a$, and (iii) a normal shock is found at the exit section.

2. For $p_a/p_c = 0.99$, obtain the values of the Mach number at the exit and at the throat M_e and M_t. Determine the mass flow rate G, giving the result in the form $G/(\sqrt{\gamma \rho_c p_c A_e})$.

3. For $p_a/p_c = 0.1$, obtain the values of M_e and M_t as well as the mass flow rate $G/(\sqrt{\gamma \rho_c p_c A_e})$. An oblique shock is formed at the exit section. Determine the Mach number immediately downstream as well as the deflection angle.

4. For $p_a/p_c = 0.025$, obtain the values of M_e and M_t as well as the mass flow rate $G/(\sqrt{\gamma \rho_c p_c A_e})$. The expansion formed at the exit section is a Prandtl-Meyer expansion in the vicinity of the nozzle rim. Determine the Mach number found downstream as well as the deflection angle.