Problem 1: Show that the specific impulse $I_{sp} = T / (g\dot{m})$ of a rocket engine with $p_e = p_a$ can be expressed in the form

$$I_{sp} = \left(\frac{2}{\gamma - 1} \right)^{1/2} \frac{\sqrt{\gamma (R_o/W) T_0}}{g} \left[\left(\frac{p_0}{p_a} \right)^{-\frac{\gamma - 1}{\gamma}} - 1 \right]^{1/2} \left(\frac{p_0}{p_a} \right)^{-\frac{\gamma - 1}{2\gamma}},$$

where T_0 and p_0 and the stagnation temperature and stagnation pressure in the combustion chamber, γ and W are the specific-heat ratio and the mean molecular mass of the exhaust gas, and $R_o = 8.314 \text{ J/(mol K)}$ is the universal gas constant. Use the above expression to determine the specific impulse at take-off of a hydrogen-oxygen rocket engine with $T_0 = 3000 \text{ K}$ and $p_0 = 50 \text{ atm}$. In the evaluation, use $W = 18 \times 10^{-3} \text{ kg/mol}$ and $\gamma = 1.2$ for the exhaust gas, as corresponds to water vapor at high temperature.

Problem 2: Consider a two-stage rocket designed for a 1,000-kg payload. The two stages, which are identical, have $I_{sp} = 400 \text{ s}$, $m_{ST1} = m_{ST2} = 1,000 \text{ kg}$, and $m_{PR1} = m_{PR2} = 5,000 \text{ kg}$.

- Obtain the maximum velocity increment neglecting aerodynamic drag and gravity effects.

Consider now gravity effects.

- To maximize the velocity gain we need to minimize the burning time. Obtain the minimum burning times t_{b1} and t_{b2} if the payload cannot withstand an acceleration greater than $5g$. Assume that the burning rate for each stage is constant, so that $\dot{m}_1 = m_{PR1}/t_{b1}$ and $\dot{m}_2 = m_{PR2}/t_{b2}$.

- Obtain the maximum velocity increment.
Problem 3: A rocket must be designed to reach a velocity increment $\Delta u = 5,000$ m/s. The total initial mass of the rocket is $m_o = m_{PL} + m_{ST} + m_{PR} = 10,000$ kg and the structural mass is $m_{ST} = 1,000$ kg. Determine the maximum payload m_{PL} in the following scenarios, using in all cases $\Delta u = 5,000$ m/s, $m_o = 10,000$ kg, $m_{ST} = 1,000$ kg, and $I_{sp} = 450$ s.

We begin by neglecting drag and gravity effects.

1. For a single-stage rocket, show that the propellant mass is given by
 \[\frac{\Delta u}{g I_{sp}} = \ln \left(\frac{m_o}{m_o - m_{PR}} \right) \rightarrow m_{PR} = m_o \left[1 - \exp \left(-\frac{\Delta u}{g I_{sp}} \right) \right]. \]

2. Obtain the value of m_{PR} as well as the payload m_{PL}.

Consider next a rocket with two identical stages $m_{ST1} = m_{ST2} = m_{ST}/2 = 500$ kg and $m_{PR1} = m_{PR2} = m_{PR}/2$.

3. By adding the velocity increments $\Delta_1 u$ and $\Delta_2 u$ associated with each one of the two stages show that
 \[\frac{\Delta u}{g I_{sp}} = \ln \left(\frac{m_o(m_o - m_{ST}/2 - m_{PR}/2)}{(m_o - m_{PR}/2)(m_o - m_{ST}/2 - m_{PR})} \right). \]

4. Solve the above equation to determine the value of m_{PR}.

5. Compute the payload m_{PL} as well as the payload ratios λ_1 and λ_2 for each rocket stage.

6. Calculate the velocity increments $\Delta_1 u$ and $\Delta_2 u$ associated with each one of the two stages, verifying that $\Delta_1 u + \Delta_2 u = 5,000$ m/s.

Consider now gravity effects for a single-stage rocket.

7. Assuming a constant burning rate \dot{m}, show that the burnout time t_b must satisfy
 \[\frac{t_b}{I_{sp}} \geq \frac{m_{PR}}{N(m_o - m_{PR})} \]
 if the payload cannot withstand an acceleration greater than $N g$.

8. For the minimum possible value of t_b, show that the propellant mass is given by
 \[\frac{\Delta u}{I_{sp} g} = \ln \left(\frac{m_o}{m_o - m_{PR}} \right) - \frac{m_{PR}}{N(m_o - m_{PR})}. \]
 Solving numerically the above equation yields $m_{PR}/m_o = 0.7855$ for $N = 9$.

9. Determine the payload m_{PL} and the burnout time t_b.

10. Compute the initial value of the rocket acceleration
 \[\frac{du}{dt} = \left(\frac{m_{PR} I_{sp}}{m_o t_b} - 1 \right) g. \]