Problem 1: Consider a turbojet with compressor pressure ratio $P_r = 20$, nozzle exit area $A_e = 0.5 \text{ m}^2$, peak temperature $T_0 = 1800 \text{ K}$, and adiabatic efficiencies (diffuser, compressor, turbine, and nozzle) $\eta_d = 0.85$, $\eta_c = 0.8$, $\eta_t = 0.9$, and $\eta_n = 1$ (i.e., the nozzle is assumed to be ideal). Follow the steps listed below to calculate the air mass flux

$$\dot{m}_a = \frac{p_e u_e A_e}{1 + f} = \frac{\gamma}{1 + f} \frac{p_a A_e}{a_a} M_e \left(\frac{p_e}{p_a} \right) \left(\frac{T_e}{T_a} \right)^{-1/2}$$

and the thrust

$$T = \dot{m}_a a_a [(1 + f) u_e/a_a - M_e] + A_e (p_e - p_a)$$

both at cruise conditions (36,000 feet) and at takeoff. In the calculations, assume that the effective heat of reaction is $\eta_b Q_R = 45 \times 10^6 \text{ J/kg}$, that the pressure loss in the combustor is negligible (i.e. $r_c = \frac{p_0}{p_0_3} = 1$), and that $\gamma = 1.4$ and $R_g = 287 \text{ J/(kg K)}$, corresponding to $c_p = 1,004.5 \text{ J/(kg K)}$.

During flight at cruise conditions ($M = 1.5$, $p_a = 22,600 \text{ Pa}$, and $T_a = 217 \text{ K}$):

1. Determine the fuel-to-air mass ratio f.
2. Obtain the temperature jump across the turbine T_{0_b}/T_{0_a}.
3. Assuming that the nozzle is dimensioned to give $p_e = p_a$ at cruise, calculate the exit Mach number M_e, along with the exit temperature T_e/T_a and the exit velocity u_e/a_a.
4. Compute the nozzle throat-to-exit area ratio A_t/A_e.
5. Determine the air mass flux \dot{m}_a (kg/s) and the thrust T (kN).

At takeoff ($M = 0$, $p_a = 101,300 \text{ Pa}$, and $T_a = 288 \text{ K}$):

6. Determine the fuel-to-air mass ratio f.
7. Obtain the temperature jump across the turbine T_{0_b}/T_{0_a} and the pressure behind the turbine, giving the latter in the form p_{0_b}/p_a.
8. The nozzle has fixed geometry (i.e., the value of A_t/A_e is that computed above). Assuming that the nozzle remains choked at takeoff, with an oblique shock forming right outside the nozzle exit, obtain the values of the Mach number M_e, temperature T_e/T_a, velocity u_e/a_a, and pressure p_e/p_a at the nozzle exit section.
9. Obtain the deflection of the jet stream across the oblique shock near the nozzle rim δ, as well as the corresponding post-shock Mach number M_d.
10. Compute the takeoff values of the air mass flux \dot{m}_a (kg/s) and thrust T (kN).
Problem 2: A turbojet with compressor pressure ratio \(P_{rc} = 12 \) is designed to fly at \(M = 1.5 \) at an altitude where the ambient temperature is \(T_a = 220 \) K. The maximum temperature allowed at the entrance of the turbine is \(T_{0t} = 1,800 \) K. In the calculations use \(\gamma = 1.4 \), \(c_p = 1,004 \) J/(kg K), \(R_g = 287 \) J/(kg K), and \(Q_R = 45 \times 10^6 \) J/kg for the properties of the gas and \(\eta_d = 0.97 \), \(\eta_c = 0.85 \), \(\eta_t = 0.92 \), and \(\eta_n = 0.98 \) for the adiabatic efficiencies of the diffuser, compressor, turbine, and nozzle, respectively.

1. Compute the ambient sound speed \(a_a \).
2. Calculate the fuel-to-air ratio \(f \). In the calculation, assume that the burner efficiency is \(\eta_b = 1 \).
3. Find the temperature jump across the turbine \(T_{0s}/T_{0t} \).
4. Determine the pressure jump across the turbine \(p_{0s}/p_{0t} \).
5. Assuming that the pressure drop across the combustor is negligible (i.e. \(r_c = 1 \)), compute the exhaust speed \(u_e \).
6. Obtain the specific thrust \(\tau/\dot{m}_a \), giving the result in (kN \cdot s)/kg.
7. Compute the TSFC, giving the result in kg/(kN \cdot s).
8. Determine the propulsion efficiency \(\eta_p \).
9. Calculate the thermal efficiency \(\eta_{th} \).
10. Obtain the overall efficiency \(\eta_o \).