
MAE 210B – FLUID MECHANICS II – SPRING 2017

HOMEWORK ASSIGNMENT # 1 (Due on April 17, 2017)

Problem 1: In cylindrical coordinates, v = vrer + vθeθ + vzez. Use the expressions
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to derive the three components of the momentum equation
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In the derivation, note that
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Problem 2: For axisymmetric flow v = vr(r, z)er + vz(r, z)ez show that
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If the flow is inviscid, show that the vorticity equation reduces to
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Problem 3: Consider the planar inviscid flow of a constant density fluid through a contraction in
a channel. The velocity profile upstream from the contraction (i.e. as x → −∞ for 0 ≤ y ≤ H1)
is given by v = U1(y)ex = Ayex and the pressure is p = p1, where A and p1 are constant. Obtain
the velocity profile v = U2(y)ex and the pressure p = p2 downstream from the contraction (i.e. as
x → +∞ for 0 ≤ y ≤ H2).
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