Problem 1: For axisymmetric flow in spherical coordinates \(\mathbf{v} = v_r(r, \theta) \mathbf{e}_r + v_\theta(r, \theta) \mathbf{e}_\theta \). Show that
\[
\omega = \nabla \times \mathbf{v} = \omega_\phi \mathbf{e}_\phi = \frac{1}{r} \left(\frac{\partial (rv_\theta)}{\partial r} - \frac{\partial v_r}{\partial \theta} \right) \mathbf{e}_\phi.
\]
If the flow is inviscid, show that the vorticity equation reduces to
\[
\frac{D}{Dt} \left(\frac{\omega_\phi}{r \sin \theta} \right) = \frac{\partial}{\partial t} \left(\frac{\omega_\phi}{r \sin \theta} \right) + v_r \frac{\partial}{\partial r} \left(\frac{\omega_\phi}{r \sin \theta} \right) + \frac{v_\theta}{r} \frac{\partial}{\partial \theta} \left(\frac{\omega_\phi}{r \sin \theta} \right) = 0.
\]
In the derivation, you might want to use the geometrical expressions \(\partial \mathbf{e}_r / \partial \phi = \sin \theta \mathbf{e}_\phi \) and \(\partial \mathbf{e}_\theta / \partial \phi = \cos \theta \mathbf{e}_\phi \).

Problem 2: To estimate the force acting on a sewer lid located in a ditch of depth \(h \), consider the planar configuration sketched in the figure below, where the origin of the coordinate system is located at the center of the lid. In the analysis, follow these steps:

1. Determine the potential motion resulting from the superposition of a uniform flow of velocity \(U_\infty \), a sink of strength \(-Q\) located at \(z = -a \) and a source of strength \(Q \) located at \(z = +a \), computing the complex potential as well as the stagnation points as a function of \(\Lambda = Q / (\pi U_\infty a) \).

2. Sketch the resulting stream lines for \(\Lambda > 1 \), \(\Lambda = 1 \) and \(\Lambda < 1 \).

3. Verify that, for this last case \(\Lambda < 1 \), the flow field can be associated with the problem at hand, writing the two relationships that link \(\Lambda \) and \(l/a \) with \(h/l \).

4. Obtain the pressure distribution along the horizontal axis \(z = x \), giving the result in the form \((p - p_\infty) / (\rho U_\infty^2 / 2) \) as a function of \(\Lambda \) and \(x/a \).

5. Compute the force acting on the sewer lid, making use of the results derived above in 3) to write the result in the form \(F / (\rho U_\infty^2 l / 2) \) as a function of \(\Lambda \).

6. Calculate the dimensionless force \(F / (\rho U_\infty^2 l / 2) \) for the particular case \(h/l = 3\pi / 8 \).
Problem 3: To investigate the so-called ground effect on the flow field around an aircraft moving parallel to the ground at height h use the potential flow sketched in the figure below, with the effect of the aircraft assumed to be that of a vortex of circulation $-\Gamma$. Obtain the complex potential and the associated stagnation points as a function of the parameter $K = \Gamma/((\pi U_\infty h)$, plotting the resulting stream lines when $K > 1$, $K = 1$, and $K < 1$.

\[\begin{align*}
 \text{Stream lines} & \quad \text{Vortex} \\
 \text{Upstream} & \quad -\Gamma \\
 \text{Downstream} & \quad \text{Stagnation point} \\
 \text{Ground} & \quad h \\
 \text{Axis} & \quad x, y \\
\end{align*} \]