Problem 1 (1.2 in Acheson): An ideal fluid is rotating under gravity \(g \) with constant angular velocity \(\Omega \), so that relative to fixed cartesian axes \(\mathbf{v} = (-\Omega y, \Omega x, 0) \). We wish to find the surfaces of constant pressure, and hence the surface of a uniformly rotating bucket of water (which will be at atmospheric pressure).

‘By Bernoulli,’ \(\frac{p}{\rho} + \frac{1}{2} \mathbf{v}^2 + gz \) is constant, so that the constant pressure surfaces are

\[
z = \text{constant} - \frac{\Omega^2}{2g} (x^2 + y^2).
\]

But this means that the surface of a rotating bucket of water is at its highest in the middle. What is wrong?

Write down the Euler equations in component form, integrate them directly to find the pressure \(p \), and hence obtain the correct shape for the free surface.

Solution: It is true that for steady inviscid flow of a constant-density fluid \(\frac{p}{\rho} + \frac{1}{2} \mathbf{v}^2 + gz = C \) along every streamline, but the constant \(C \) may be different along different streamlines, which is precisely what happens here. Since the velocity is known, we may determine the pressure directly by integrating the system of equations

\[
0 = -\frac{\partial p}{\partial z} - \rho g, \quad -\rho \Omega^2 x = -\frac{\partial p}{\partial x}, \quad -\rho \Omega^2 y = -\frac{\partial p}{\partial y}
\]

to give \(p = \frac{1}{2} \rho \Omega^2 (x^2 + y^2) - \rho gz + p_0 \), where the \(p_0 \) is the value of the pressure at the origin of the cartesian coordinate system. Correspondingly, the surface of the rotating bucket, where \(p = p_a \), is the paraboloid

\[
z = \frac{p_0 - p_a}{\rho g} + \frac{\Omega^2}{2g} (x^2 + y^2).
\]

Problem 2 (from 1.4 in Acheson): Take the Euler momentum equation for an incompressible fluid of constant density

\[
\rho \frac{\partial \mathbf{v}}{\partial t} + \rho \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla p - \rho g \mathbf{e}_z,
\]

cast it into an appropriate form, and perform suitable operations on it to obtain the energy equation:

\[
\frac{d}{dt} \int_V \frac{1}{2} \rho \mathbf{v}^2 \, dV = -\int_S (p + \rho gz + \frac{1}{2} \rho \mathbf{v}^2) \mathbf{v} \cdot \mathbf{n} \, dS,
\]

where \(V \) is the volume enclosed by a fixed closed surface \(S \) drawn in the fluid, with \(\mathbf{n} \) denoting the corresponding normal unit vector pointing outwards.

Solution: We begin by writing the momentum equation in the form

\[
\rho \frac{\partial \mathbf{v}}{\partial t} + \nabla (p + \rho gz + \frac{1}{2} \rho \mathbf{v}^2) - \rho \mathbf{v} \wedge (\nabla \wedge \mathbf{v}) = 0.
\]

By taking the dot product with \(\mathbf{v} \) and using the condition \(\nabla \cdot \mathbf{v} = 0 \) we may derive a conservation equation for the kinetic energy:

\[
\frac{\partial}{\partial t} \left(\frac{1}{2} \rho \mathbf{v}^2 \right) + \nabla \cdot \left[(p + \rho gz + \frac{1}{2} \rho \mathbf{v}^2) \mathbf{v} \right] = 0.
\]

Integrating now the above equation in a volume \(V \) enclosed by a fixed closed surface \(S \) and using \(\int_V \frac{\partial}{\partial t} \mathbf{v} \, dV = \frac{d}{dt} \int_V \mathbf{v} \cdot dV \) for the first term along with Gauss theorem \(\int_V \nabla \cdot \mathbf{v} \, dV = \int_S \mathbf{v} \cdot \mathbf{n} \, dS \) for the second term provides the desired result.