1. At what temperature will a system have the same numerical value on the Centigrade (or Celsius) and the Fahrenheit scale? Express your result on the Kelvin and the Rankine scale.

2. A gas within a piston-cylinder assembly undergoes a thermodynamic cycle consisting of three processes: **Process 1-2:** Compression with \(pV \) = constant, from \(p_1 = 1 \) bar, \(V_1 = 2 \text{ m}^3 \) to \(V_2 = 0.2 \text{ m}^3 \), \(U_2 - U_1 = 100 \text{ kJ} \). **Process 2-3:** Constant volume to \(p_3 = p_1 \). **Process 3-1:** Constant pressure and adiabatic process.

Sketch the cycle in \(pV \) diagram and determine the net work of the cycle in \(kJ \) and the heat transfer for process 2 – 3 in \(kJ \).

3. Helium gas is contained in a closed rigid tank. An electric resistor in the tank transfers energy to the gas by heating at a constant rate of 1 \(\text{kW} \). Heat transfer from the gas to its surroundings occurs at a rate of 5 \(\text{twatts} \), where \(t \) is time, in minutes. Plot the change in internal energy of the helium, in \(kJ \), for \(t \geq 0 \). At what time, does the gas return to its initial value of the internal energy?

4. Steam in a piston-cylinder assembly undergoes a polytropic process. The initial and final state are \(p_1 = 690 \text{kN/m}^2 \), \(v_1 = 0.3 \text{ m}^3/\text{kg} \), \(u_1 = 2643 \text{kJ/kg} \) and \(p_2 = 276 \text{kN/m}^2 \), \(v_2 = 0.7 \text{ m}^3/\text{kg} \), \(u_2 = 2615 \text{kJ/kg} \), respectively. For the process, determine the work and heat transfer, each in \(kJ/kg \) of steam.

5. Air at 1 bar and 25\(^\circ\)C with specific volume 1 \(\text{m}^3/\text{kg} \) is compressed to 5 bar and 25\(^\circ\)C by two reversible processes: a) cooling at constant pressure followed by heating at constant volume and b) heating at constant volume followed by cooling at constant pressure. Assume \(c_p = 1 \text{kJ/(kg K)} \) to be constant. The molecular weight of air can be taken as \(M = 28 \text{g/mol} \). With the ideal-gas model, calculate the heat and work requirements and \(\Delta u \) and \(\Delta h \) of the air for both cases expressing in the units of \(kJ/kg \).

6. For an ideal gas, show that

\[
\int_1^2 \frac{\delta q}{T} = c_v \ln \frac{T_2}{T_1} + R \ln \frac{v_2}{v_1}
\]

by assuming \(c_v = \text{constant} \).

7. Find the work done per unit mass by a gas during an isothermal expansion from an initial specific volume \(v_1 \) to a final specific volume \(v_2 \) if the equation of state is

\[
\frac{pv}{RT} = 1 + \frac{B(T)}{v} + \frac{C(T)}{v^2}.
\]