1. Solve the equation
\[y' = (\cosh x)\sqrt{y} - e^x y, \quad y(0) = 1. \]

2. Solve the inhomogeneous initial-value problem
\[y'' + \omega^2 y = xe^{-x^2}, \quad y(0) = 0, \quad y'(0) = v \]
using a Green’s function approach.

3. Show that the origin is a regular singular point of the differential equation
\[xy'' + (\gamma + 1 - x)y' + \beta y = 0. \]
Take \(\gamma > -1 \) and non-integer. Solve the indicial equation and find the recurrence relation. Show that there are polynomial solutions for integer \(\beta \), and obtain the polynomials explicitly for \(\beta = 0, 1 \) and 2.

4. Show that the solution to the equation
\[y'' - \frac{yy'}{x} = 0 \]
with boundary conditions \(y(1) = 0 \) and \(y'(1) = C \) is
\[x = \exp \left(\int_0^1 \frac{d\zeta}{\zeta^2/2 + \zeta + C} \right). \]
Obtain the solution explicitly for \(C = 1/2 \).

5. Find the most general solution \(u(x, y) \) to the following equation, consistent with the boundary condition stated:
\[\frac{\partial u}{\partial x} + (x + y) \frac{\partial u}{\partial y} = 0, \quad u(0, y) = \ln y. \]

6. Find the solution to
\[\frac{3}{4} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x \partial y} - \frac{\partial^2 u}{\partial y^2} = 0 \]
with boundary conditions \(u = e^{x^2} \) and \(\partial u/\partial y = x^3 \) along the line \(y = 0 \).